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Long wavelength disturbances to non-planar 
parallel flow 
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(Received 24 July 1967) 

The instability of unbounded parallel inviscid flows which are neither plane nor 
axisymmetric is studied for disturbances with long wavelengths in the flow 
direction. The details of the variation of the flow velocity on any scale smaller 
than the wavelength are shown to have no effect on these disturbances and it is 
only the non-uniformity of the flow at infinity which is relevant. There is a class 
of disturbance which can only exist because of the non-uniformity, and it is 
governed by an equation similar to the Rayleigh equation for inviscid plane 
parallel flow. A number of the properties of the solution can be found and a 
large class of flows can be shown to be unstable. When the flow at infinity is 
linear in sectors it is easy to find simple solutions. Particular flows, which are 
either uniform in sectors with vortex sheets along the dividing radii or are 
continuous, but with a linear variation in each sector, are studied in detail and 
are shown to be unstable, even when the non-uniformity is confined to a narrow 
sector. 

1. Introduction 
Although the instability of plane parallel flow has been studied for many 

years and is well understood for both finite and infinite Reynolds numbers, the 
corresponding problem for non-planar flow has received very little attention. 
In considering such flows, the main point of interest is tto determine to what 
extent the results for plane flow are modified by the non-planar character of the 
flow. In  particular, one wants to know if there are any unstable disturbances 
which can exist only when the flow is non-planar. Axisymmetric jets have been 
shown by Batchelor & Gill (1962) to be in many ways similar to plane jets, but 
anomalous effects are produced when the disturbances are not axially symmetric. 
Other specialized cases of non-planar flow have been discussed by Hocking 
(1964, 1965) and Kelly (1965), but it is difficult to draw any general conclusions 
from these isolated results. 

There seem to be two reasons for the paucity of studies of asymmetric parallel 
flow. The first is the considerable increase in complexity which the asymmetry 
produces. Even such a fundamental result for plane flow as the importance of 
the point of inflexion in the velocity profile has no known analogue for asym- 
metric flow. The difficulty in generalizing this result is due to the non-uniform 
curvature of the vortex-lines. If the complexity of the problem were the only 
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reason for its neglect, no justification of its further study would be needed. It is 
probable, however, that the problem has not received more attention because 
of the lack of experimental evidence of any features of the instabilities develop- 
ing in a flow which can be attributed to the asymmetry, particularly in the case 
of flows which approximate to the unbounded flows which are considered in this 
paper. But this problem is not only mathematically complex; it is also complex 
physically, in the sense that the physical processes bound up with the asym- 
metry of the flow are obscure. In  this situation, it is a legitimate procedure to 
begin by considering certain simple, if somewhat artificial, cases, in the hope that 
some of the physical processes involved may be elucidated, and then the experi- 
mental evidence can be examined with some guidance about what to look for. 
It is as a step along this line of action that this paper has been written. 

The flows to be studied here are general unbounded parallel flows at  infinite 
Reynolds numbers, and the wavelength of the disturbances in the direction of 
the flow is large. There are several reasons why, in the absence of a more general 
theory, these limiting situations are of interest. First, long wavelength distur- 
bances are least affected by viscosity. Secondly, the flows considered are in fact 
all unstable, and, by analogy with plane flows, it may be anticipated that the 
primary effect of viscosity will be to reduce the amplification rate of the dis- 
turbances, only stabilizing them at comparatively low Reynolds numbers. 
Thirdly, the effect of the non-planar nature of the flow may be expected to be 
most noticeable for disturbances whose wavelength is comparable to the scale 
of variation of the flow velocity. For very small wavelengths, the flow will be 
locally plane and the effect being sought will be unimportant. For very long 
wavelengths, the large scale variations in the flow velocity will dominate. 
Suppose this velocity is W(r ,  8), where r,  8 are polar co-ordinates in the plane 
perpendicular to the direction of flow, and suppose also that 

lim W(r ,  8) = F(8). 

A consideration of the disturbances of long wavelength will determine the way 
in which the stability of the flow is affected by this non-uniformity at infinity. 
If the non-uniformity is absent, i.e. if (8) is a constant, the flow, on the length 
scale of the wavelength of the disturbance, is axisymmetric and the results of 
Batchelor & Gill (1962) can be applied. It is shown below that if the flow is non- 
uniform at infinity, it  is, in most cases, unstable to long wavelength disturbances, 
and moreover that this instability only occurs because of the non-uniformity. 

Long wavelength disturbances to inviscid plane parallel flow have been studied 
by Drazin & Howard (1962). Plane flows are of two kinds, jet flows in which the 
velocity, W ( z )  say, has equal limiting values as x-+ +a, and shear flows in 
which the limiting values are unequal. For long wavelength disturbances, it is 
only these limiting values of W which are important; jet flows are neutrally 
stable and shear flows unstable (on the length scale of these disturbances, the 
shear flow looks like a vortex sheet). Drazin & Howard were able to  show how 
these limiting situations were approached as the wavelength tends to infinity, 
which is especially important in the jet flow, as it is necessary to know whether 
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the neutral limit is reached via neutral or unstable oscillations. In  the present 
problem, there is greater variety; instead of the single shear type flow, there is a 
whole class of flows, depending on the function (8). As these flows are unstable, 
there is less need to consider how the limiting values of the wave velocity are 
reached and this extension will not be attempted here. 

In  $ 2 ,  the equation for the disturbances is derived and some general results 
obtained, and in $$3,4,  the range of the wave-velocities of the disturbances are 
found for some specimen flows. 

2. Long wavelength instability 
If (r,  8, z )  are cylindrical polar co-ordinates and W(r,  8) is the velocity of the 

flow in the z-direction, the linearized equations of motion and the equation of 
continuity are 

aP i a ( W - c ) u  = -7 
pdr ’ 

aP ia (W-c)v  = -- 
pr  88 ’ 

aw aw P ia(W-c)w+u-+v- = -ia-, 
ar ra6 P 

a(ru) av 
-+-++aw = 0) 
rar rae 

where the disturbance velocity is (u, v, w) exp [ia(z - c t ) ]  and the pressure is 
p exp [ k ( x  - c t ) ] .  The most convenient variable is p ,  which satisfies the equation 

There are two length scales in this equation, the wavelength of the disturbance, 
which is 2nla, and the scale of the radial variation of W ,  say a,. If all lengths are 
scaled by l/a and a is allowed to tend to zero, the pressure equation becomes, 

where w ( S )  = lim W(r,  8)) as before, and i = ar. This equation will hold as long 
as? B aa. Theouter boundary conditionisthatp+O as ?-+a. The inner boundary 
condition is that p is finite at  i = 0, but this value of i is outside the range of 
validity of (2).  The appropriate inner boundary condition for ( 2 )  is obtained by a 
matching procedure. The pressure equation valid when r is O(a) is obtained by 
letting a tend to zero in (I), which gives 
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The solutions of this equation which are finite at  r = 0 must have the same 
limiting behaviour as r -+ 03 as the solutions of (2) as i --f 0. The variables in ( 2 )  
can be separated, by writing p = R(P) S(o),  where 

The solutions of (4) are Bessel functions of purely imaginary order and argu- 
ment, but their relevant properties are most easily obtained from the differential 
equation. For r" n, the solutions are of exponential type and the one which is 
small at infinity is required by the outer boundary condition. For i n, the 
solutions are oscillatory and as ?-to, the required solution will have the form 
cos(nlogP+e), where E is the (undetermined) phase for the solution which is 
exponentially small at  infinity. The possible values of n are determined by the 
matching condition. For this condition to be satisfied, it  is necessary to show that 
the solution of (3) which asymptotes to cos (nlogr+&)S(o) is finite at  r = 0, 
where 6 = E + n log a. The equation (3) can be written 

div [( W - c ) - ~  gradp] = 0. 

The vector differential operators are two-dimensional and it is easy to show that 

div[(W-c)-2(logrgradp--pgrad(logr))] = -pg rad (W-~) -~ .  grad (logr). 

This equation is integrated over the area bounded by the circles of radius p and 
R, and the limits p + 0 and R -+ co are taken, which results in 

+/owJo2r 2 -- a: ( W - c ) - ~ P  dr do, (6) 

where W, is the value of the continuous function W(r,  0) a t  r = 0. 
Sincep is to be finite at  r = 0 and if a Wlar is o( l l r )  as r --f co, the second term on 

the right of (6) is bounded. Since p N cos (n log r + 6) S(0) as r -+ co, the first term 
on the right of (6) is proportional to 

using the differential equation ( 5 )  and the periodicity of S. Hence p is finite at  
r = 0 for all real values of n. The stability problem has thus been reduced to the 
determination of values of c for which 

n2S = 0 
d2S 2 dWdS 
do2 W-cdOdO 

has periodic solutions. If is a constant, no such solutions are possible, so that 
all the values of c which are found below are closely related to the non-uniformity 
of the flow velocity. 
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In terms of a new variable q5 = (v - c)-ldS/dO, the equation becomes 

which is identical with the Rayleigh equation for plane parallel flow, except that 
the boundary conditions applicable to that problem are that q5 must vanish at  
both ends of the range of values of 8, whereas here the condition is that @ and 
dq5/d8 have the same values at  8 = 0 as they do at  8 = 2n. The familiar results 
about the point of inflexion of the velocity profile still apply in this problem, 
their derivation being identical with that for the plane case. Since is periodic, 
there are always at least two positions a t  which d2W/d82 = 0, so that the neces- 
sary condition for the existence of unstable disturbances is always satisfied. 
The existence of such disturbances can be proved in the special case when 
K = - (d2W/d02)/(W - Fc) is always positive (Lin 1965), where vc is the value of 
w at the inflexion point. For example, if v = cosm8, the zeros of are all 
inflexion points, with wc = 0 and K = m2. Neutral solutions of (7 )  with c = 0 
are q5 = cos q8, sin q8, where q2 + n2 = m2 and q and m are integers. The proof of 
the theorem as given by Lin shows that each neutral solution has a neighbouring 
solution with a positive imaginary value for c and a slightly decreased value of n. 

Another general result which provides information about the possible values 
which c can have is the extension of Howard’s semicircle theorem to non-planar 
flows (Eckart 1963; Hocking 1965). This theorem states that the complex wave 
velocity c must lie within or on the semicircle in the upper half plane whose 
diameter is the range of values of the flow velocity. The theorem can be applied, 
both to the complete flow W(r,  8) and to the limiting flow V(8). Since the scale 
and origin for v are arbitrary, in what follows they will be chosen to make the 
greatest and least values of w & 1, so that the semicircle is defined by 1c) < 1, 
ci 2 0. 

As in the plane problem, solutions of (7 )  can easily be found if v is piecewise 
linear. Discontinuous values of F can occur naturally as the limits of certain 
continuous velocity functions W(r,  8). For example, if 

W = A tanh-l(x/a) + B tanh-l(y/a), 

w takes one of the four values f A 2 Bin each of the four quadrants. Values of FV 
which are uniform in sectors with vortex sheets along the dividing radii are con- 
sidered in the next section and cases in which pvaries linearly in sectors in $4. 

3. Radial vortex sheets 
The conditions linking the solutions on either side of a discontinuity in w are 

that the pressure is continuous and that the interface must be a material surface. 
In terms of q5, these conditions are continuity of (w - c) (dq5ld8) - (dv /dO)q5 
and of +/(w - c). Suppose the flow is divided into m sectors by vortex sheets, so 
that, for i = 1, 2, . . . ,mj  

with a, = 0, a,,+1 = 277 and the sectorial angles pi = ai+l-ai. The solutions of 
(7)  for each sector can be written 

T(e) = K, a, < 8 < 

+i = (%-c)(Ai coshn(8-aJ + B,sinhn(8-ai)) 
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and the continuity conditions a t  the interfaces give the set of equations 

Ai+l = Ai coshnpi + B, sinh npi, 

Bi+l = - (Ai sinh npi + Bi cosh npi), 

with L$ = ( Wi - c ) ~  and A,,, = A,, B,+, = B, and U,,, = U,. These equations 
in matrix form are 

ui 
U,,l 

= 0, 

- I  0 ... 

and the only non-zero blocks in the 2m x 2m matrix occupy the leading diagonal, 
the adjacent upper diagonal and the lower left corner. The determinant of the 
matrix can easily be found by elementary transformations and the eigenvalue 
equation for c, which is found by equating this determinant to zero, is 

/PmPrn-, . . .P1-1~ = 0. 

IPI = n (q/q.,.l) = 1, 

If P = P,Pm_, ... P,, 
m 

i= 1 

so that (8) can be written 
trace (P) = 2 .  

The resulting equation in terms of c is of degree 2m. The complex roots occur in 
conjugate pairs so there are a t  most rn eigenvalues corresponding to  unstable 
disturbances. The eigenvalues are functions of the parameter n which can take 
all positive values so that each lies on a curve whose end-points are given by 
n = 0 and n-> 00. These extreme values can be found in general. 

When n is small, 

and the terms of order 1 in (8) disappear. The terms of order n combine to give, 
after some manipulation 

The vanishing of the first factor gives 

(CP,) c = xpiw, + i(XpiXpiw; - ( q 3 , w , ) 2 ) + ,  

which represents an unstable disturbance travelling with the mean speed of the 
flow, whatever values and pi have. There is therefore at  least one unstable 
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disturbance in the limit n-t 0,  and the other factor in (10) may give up to (m - 1) 
additional unstable eigenvalues. In  the other extreme case, n + a ,  

and the exponentially large term in the trace of P is 

- e . q + Z )  1 
( 1 + 2 )  ...( l+$) (1+2). 2 m  

Since (9) shows that trace (P) must be finite, the eigenvalue equation is 

(U, + U,) (U, + Us). . . (Urn + U,) = 0. (11) 

There are m unstable eigenvalues 

c = $(K+q+,)f&iIq-qi.,1 (i = 1 , 2  ,... m), 

and these are just the eigenvalues appropriate to each vortex sheet in isolation. 
The reason for this result is that, for large n, 4 is a rapidly varying function of 0 
and it is possible to have a disturbance which is O( 1)  near 8 = Eland exponentially 
small elsewhere. Such a disturbance will only be affected by the vortex sheet 
at 0 = ai and not by the other vortex sheets. The disturbance with the maximum 
possible growth rate has c = i, from the semicircle theorem, but this value will 
only be attained as n- tm if the greatest and least values of the velocity, ? 1, 
occur in adjacent quadrants. 

The way in which the values of c vary between the two extremes cannot be 
determined in general, so some particular cases will be considered. First, suppose 
that there are two vortex sheets, inclined at  an angle ,8, so that W, = 1, W, = - 1, 

= p, p, = 2n - p. These values substituted in (9) give 

2 coshn/3coshn(2rr -p )  - 2 + - +- sinh npsinhn(2n -p )  = 0, (2 2) 
and for each value of n there are two eigenvalues c = eiY, where 

sinh n(n - p) 
cosy = * 

sinh nrr ' 

All the values of c lie on the bounding semicircle and they occupy the sector 
bounded by 

n 
argc= -+sin-, 

2 -  

When p = n, all the eigenvalues are equal to i, which is to be expected since the 
two vortex sheets then lie in the same plane. As ,8 decreases, the eigenvalues 
corresponding to large values of n are unaltered, but those corresponding to small 
values of n decrease in imaginary part and tend to f 1 as n -+ 0. 
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The flow which is the limit of the combined inverse hyperbolic tangent profiles 
mentioned earlier consists of four vortex sheets equally spaced. With m = 4, 
and p1 = p, = ,5, = p, = &T the eigenvalue equation (8) is 

-1 0 1 

FIGUILE 1. The complex wave-velocity for disturbances to vortex sheets along thc axes. 
The velocities in the quadrants are 1, - 1, 0, 0, respectively. The curves A B  represent the 
loci of the eigenvalues as n increases from 0 to co. All possible values of c must lie within 
the semicircle shown, by Howard’s semicircle theorem. 

f ci 

-1  0 1 
FIGURE 2.  The complex wave velocity when the velocities in the quadrants are 1, - I, 1, - 1. 

With W, = W, = 1 and W, = W, = - 1, all four eigenvalues €or every value of n 
are equal to i (see Kelly 1965). With W, = 1, W, = - 1, W3 = W, = 0 the eigen- 
values are shown in figure 1. The continuity of the velocity between the third 
and fourth quadrants reduces the number of eigenvalues to 3. With W, = 1, 
iG = W, = 0, W3 = - 1, the results are shown in figure 2 .  In the previous cases 
the greatest and least velocities have been in adjacent sectors and the eigenvalue 
with the greatest imaginary part has been associated with the particular vortex 
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sheet where this maximum discontinuity has occurred. But in this example, the 
sectors with the greatest and least velocities are not adjacent and the greatest 
growth rate is associated with disturbances with n small, that is, when the whole 
structure of the flow is involved and not just each vortex sheet considered in 
isolation. 

4. Linear variation in sectors 
There is no difficulty in treating flows with discontinuities in both the velocity 

and the velocity gradient at  various values of 0, but since the effect of the 
velocity discontinuity has already been considered, the flow will be taken to be 
continuous in this section. With the sectors defined as before, the flow velocity is 

F(0) = @+(@+,-@)(O-czi) /p,L,  (ai < 0 < a.i+,), 

where 
(7 )  for each sector are 

is the velocity at  0 = ai and W,+, = ?Q, W,,, = W,. The solutions of 

45, = Aicoshn(O-ai) +Bisinhn(B-czi). 

The boundary conditions at  the interfaces are, as before, continuity of #/(v - c) 
and of (F -c) d#/d0- (dF/d0)#,  which give 

At+, = Ai cosh npi + Bi sinh .pi, 
(F+I - c) npi+l- (@+2 - &+,) Ai+l/pi+l = (%+, - c )  n(Ai sinh npi +Bi cosh %pi) 

The eigenvalue relation is again 
- @)(Aicoshnpi+ Bisinhnpi)/Pi. 

~PmPm-,...P1-1~ =z 0, 

where the matrices Pi are now defined by 

cosh npi sinh npi 
P i =  ( 

sinh npi + hi cosh npi cosh npi + hi sinh nPi 

where 

An analysis similar to that of the previous section shows that as n+oo there 
are no unstable modes, but it does not seem possible to deduce anything in general 
about the other limit, n+  0. The stability of these continuous profiles in the limit 
n -+ 00 is not unexpected by comparison with the comparable problem for plane 
flow. For n large, only the local value of the flow is important and its continuity 
ensures stability. 

The particular example to be considered in detail is intended as an approxima- 
tion to the smoothly varying profile w = cospO. With m = 2p, and all the sec- 
torial angles equal, the values of Wi are taken to be alternately + 1 and - 1 and 

( -  l)i+l4p A.  = 
nn(( - 1)i-c)* 

The matrices Pi are the same for all even i and for all odd i, so 

PnZP,-, = P,,-lPm-z = ... = P2P, = Q, 



634 L. M .  Hocking 

and the eigenvalue equation (8) is 

where 
IQp-11 = 0, (12) 

cosh 2q + &Al sinh 2q sinh 2q + A, sinh2 q 

sinh 2q + A, coshzq + A,  cosh 2q cosh 2q + ($Al + A,) sinh 29 

+ &l,A, sinh 2q + A, A, sinh2 q 

IQ-wIJ = 0 

and q = n7r/p. The equation (12) is equivalent to the p equations 

where w is a p-th root of unity. In  terms of c the equations are 

4 sinh q(sinh q - q cosh q )  
q2( sinh2 q + sin2 y ) 

c 2 =  1 +  ' 

where y takes the values rnlp, r = 0, l , . . . ,  p - 1. Instability occurs for those 
values of q which satisfy 

sinh q 
sin2 y < __ (4p cosh q - ( q2 + 4) sinh q)  . 

4, 
The function on the right is zero when q = 0, increases to a maximum of 1 when 
q = 1.915 and decreases to zero when q = 2.40. For y = 0, the range of values of n 
for which the corresponding disturbance is unstable is 0 < n < 2.4p/7r7 and the 
largest value of ci is 1/43  when n = 0. For the other values of y there is always 
a range of values o f n  for which the disturbance is unstable, which lies inside the 
range for y = 0. They are all stable when n = 0, and the maximum values of ci 
are all less than that for y = 0. An exceptional case is y = 7r/2, which is a possible 
value when p is even. This disturbance is always stable since the maximum value 
of the right of (13) is 1. 

The final example is of a flow which is uniform a t  infinity except for a narrow 
sector where the velocity changes. The flow has velocity - 1 except in the sector 
- p  < 8 < p, in which the velocity changes linearly to the value + 1 a t  8 = 0. 
With the previous notation, p1 = p, /3, = 27r - 2/3, p3 = /3, W, = + 1, W, = - 1, 
W, = - 1. The complete eigenvalue equation is complicated, but when nj9 is 
small, there is an eigenvalue given approximately by 

c = - 1 + i(Pnj9 Goth n.;rr)a, 

and hence, however small the angle of the sector in which the flow is non-uniform, 
the flow is unstable. 
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